Pitfalls in ROC Analysis when Evaluating Normalized 1:N Matcher Scores

Brian DeCann, Ph.D Brad Ulery Nat Hall Tim Busse Delia McGarry

May 3rd, 2016

Types of 1:N Matching Scenarios

- Find <u>all</u> matching samples for the probe
 - Example: U.S. Department of State Face Recognition System

- Find (at least) one matching sample of the probe
 - Example: Access control, watch-list

Common to use ROC Analysis to evaluate matchers for these scenarios

Matcher for Study

- Noblis Research Algorithm¹
 - Deep learning approach
 - Template: 1280 bytes
 - Search 1M templates ~10s
 - C++ w/o licensing restrictions
 - Available for transition to Government
- Performance
 - TMR @ FMR = 0.1%: 70%

Recognition Performance on the Benchmark of Largescale Unconstrained Face Recognition (BLUFR) dataset.²

Contact

Dr. Mark Burge: Jordan Cheney:

mark.burge@noblis.org jordan.cheney@noblis.org

1 Sponsored by Noblis Internal Research (NSR)

2 http://www.cbsr.ia.ac.cn/users/scliao/projects/blufr/

1:1 Verification

Receiver Operating Characteristic (ROC) Analysis (1:1)

1:1 Verification

Measured <u>error rates</u> are generally <u>independent of scale of operations</u>

Test	#Genuines	#Impostors
Α	2,500	100,000
В	10,000	200,000
С	15,000	400,000

Match scores obtained from Noblis research FR algorithm on a frontal face dataset

For 1:1 verification, the ROC enables operational performance estimates from representative test data.

1:N Identification

UID. excellence © 2016 Noblis, Inc.

Receiver Operating Characteristic (ROC) Analysis (1:N)

1:N Identification

 For matcher scores that are strictly dependent on the probe and reference sample, measured error rates generally independent of test configurations.

- e.g.,
$$FAR \downarrow N = 1 - (1 - FAR) \uparrow N \cong N \cdot FAR^{1}$$

Test	Test Description
Α	Gallery: <u>0, 1, 2, mates</u>
В	Gallery: <u>0 or 1 mates</u>
С	(A) with additional mates
D	(A) with larger gallery
Е	(A) without impostor searches
F	(A) with additional impostor searches

Match scores obtained from Noblis research FR algorithm on a frontal face dataset

1 Jain, A., Ross, A., and Prabhakar, S., "An Introduction to Biometric Recognition", IEEE Transactions on Circuits and Systems for Video Technology, 2014

Not all 1:N matchers function this way!

1:N Identification with Gallery Normalization

A 1:N matcher with gallery normalization may "boost" high scores and "suppress" low scores based on rank position. Note in our example we simply boosted the rank-1 score and suppressed the others.

Normalization Can Improve ROC Performance

Potential Pitfalls

Algorithm A (Normalized)

Rank	ID	Nmzd. Score
1		0.991
2		0.815
3		0.568
4	A	0.541
5		0.515
6		0.491

Algorithm returns mates at top ranks in candidate list.

(desirable for identification, not captured by ROC)

Rank ID Nmzd. Score

1 0.788
2 0.575
3 0.559
4 0.552
5 0.538
6 0.512

But, **lower rank genuine scores** suppressed compared to impostor scores. (decreases TAR, ROC performance)

Boosting of high rank impostor scores increases FAR.

More impostor searches → Lower performance

Fewer impostor searches → Higher performance

Genuine Search

mpostor Search

Matcher Performance (with Normalization) may Depend on Test Configuration

Challenge: Developing a Test Gallery

- How to appropriately model the distribution of mates per probe?
- How to appropriately model the proportion of genuine / impostor searches?

Mates Returned in Operational Open-set 1:N System

What can be created for testing

Information from the system

What does this mean?

Dependent Results

- Impact: extrapolating performance
- Impact: comparing multiple matching algorithms

Modeling Issues

- Size of test database
- Distribution of mates for genuine searches (how to scale from operations?)
- Proportion of genuine and impostor searches (how to measure from operations?)
- Interaction-effects (e.g., demographics)

Best Practices for 1:N Testing

- (Current): Requires execution of searches with and without mates^{1,2}
- (Not Present): Guideline regarding the proportion of mated searches
- (Not Present): Guideline regarding proportion of mates in test database

² Grother, P., Quinn, G., and Phillips, P., "Report on the Evaluation of 2D Still-image Face Recognition Algorithms", NIST Interagency Report 7709, 2010

¹ Grother, P., Ngan, M., "Face Recognition Vendor Test (FRVT), Performance of Face Identification Algorithms", NIST Interagency Report 8009, May 2014

Is ROC Analysis Appropriate?

Common Metrics for Evaluation

	ROC Analysis	FPIR / FNIR / CMC ^{1,2}
Target Scenario (examples)	Find all mates (e.g., fraud detection)	Find any mate (e.g., watch-list)
Properties	Per-comparison credit Based on match scores	Per-search credit Based on rank and match scores
Weaknesses	Sensitivity to normalization May be dependent on N	Sensitivity to normalization Dependent on N

1 Grother, P., Ngan, M., "Face Recognition Vendor Test (FRVT), Performance of Face Identification Algorithms", NIST Interagency Report 8009, May 2014 2 Grother, P., Quinn, G., and Phillips, P., "Report on the Evaluation of 2D Still-image Face Recognition Algorithms", NIST Interagency Report 7709, 2010

Recommendations

- For Developers / Vendors
 - Keep normalizing!
 - Be cognizant of customer needs
- For Operators (and Evaluators)
 - Communicate system specifications and evaluation criteria with developers
 - Identify objectives
 - Value (cost) of finding one vs. some vs. all mates
 - Operating point; Error trade-off
- For Evaluators Estimating Operational Performance from Test Data
 - Compose test sets to mimic application specific characteristics
 - Test on full-scale system when possible
- For Evaluators Comparing Matching Algorithms
 - Perform sensitivity analysis (varying test configurations)

Questions?

Acknowledgements

This work was sponsored by the United States Department of State, Bureau of Consular Affairs, Consular Systems and Technology.

Noblis Visual Analytics Lab

16